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We use exact methods to derive an interface model from an underlying micro-
scopic model, i.e., the Ising model on a square lattice. At the wetting transition
in the two-dimensional Ising model, the long Peierls contour (or interface) gets
depinned from the substrate. Using exact transfer-matrix methods, we find that
on sufficiently large length scales (i.e., length scales sufficiently larger than the
bulk correlation length) the distribution of the long contour is given by a unique
probability measure corresponding to a continuous ‘‘interface model.’’ The
interface binding ‘‘potential’’ is a Dirac delta function with support on the
substrate and, therefore, a distribution rather than a function. More precisely,
critical wetting in the two-dimensional Ising model, viewed on length scales
sufficiently larger than the bulk correlation length, is described by a reflected
Brownian motion with a Dirac d perturbation on the substrate so that exactly at
the wetting transition the substrate is a perfectly reflecting surface; otherwise
there exists a d perturbation. A lattice solid-on-solid model was found to give
identical results (albeit with modified parameters) on length scales sufficiently
larger than the lattice spacing, thus demonstrating the universality of the con-
tinuous interface model.

KEY WORDS: critical wetting; exact results; interface models; Ising models;
solid-on-solid models.

1. INTRODUCTION

The modern theory of wetting, viewed as a bona fide thermodynamical phase
transition, was initiated by Cahn [1] who provided a mean-field description



from Landau theory. This was later developed more extensively by Nakanishi
and Fisher [2]. Abraham [3] analyzed the wetting transition in a two-
dimensional Ising model using exact methods and found behavior close to
the critical wetting temperature, Tw, very different from that predicted by
mean-field theory. Although these studies included the ‘‘bulk’’ degrees of
freedom, it quickly became apparent that significant progress in describing
wetting in three-dimensional systems beyond mean-field theory was most
likely to be achieved through the use of interface models [4–11].

The basic idea behind the interfacial description is to coarse-grain to
sufficiently large length scales, such as the bulk correlation length, tb, so
that the only fluctuating degrees of freedom left are the heights of the
wetting interface, y(x) \ 0, above points x in the substrate S … Rd−1 (d is
the bulk dimension). One then arrives at an effective Hamiltonian, Heff[y],
usually given as

Heff[y]=F
S
dx [12 ỹ |Ny|2+V(y)] (1)

where ỹ is the interfacial stiffness. Throughout this paper we consider only
systems with short-range forces, and for these, the interfacial potential,
V(y), was originally given the form [4, 5]

V(y)=v1(T) e−y/tb+v2e−2y/tb+·· · (2)

where v2 is positive and usually taken to be independent of temperature T
and v1(T)3 T−T

mf
w , with Tmfw being the critical wetting temperature as

determined by mean-field theory. More systematic approaches starting from
an underlying Landau–Ginzburg–Wilson Hamiltonian followed [8, 9],
which led to V(y) given by Eq. (2) but with prefactors polynomial in y
preceding the exponentials [10]. These studies also opened up the possi-
bility of a y-dependent stiffness ỹ. In any case, the partition function, ZS, is
given by the functional integral,

ZS=D
x ¥ S

F
.

0
dy(x) e−Heff[y] (3)

but it should be stressed that this is only a formal expression, whose precise
mathematical meaning is unclear, and contained within it is some lower-
length cutoff. A description of critical wetting which goes beyond mean-field
theory is then obtained by applying ‘‘functional renormalization group’’
methods [6–8, 11]—mean-field theory follows from minimizing Heff[y].
The following questions concerning interface models come to mind.

2 Upton



(1) Does any of this make sense mathematically and can such
interface models be derived using exact methods? Previous deri-
vations, although careful, are somewhat heuristic and essentially
mean-field in character. A more rigorous approach would be
desirable.

(2) For what length scales are they valid? To ‘‘smear out’’ bulk fluc-
tuations, one would have thought it necessary to coarse-grain to
a scale of at least the bulk correlation length, tb, which would
then serve as a lower-length ‘‘cutoff’’ to the functional integrals.
At the same time, tb appears explicitly in the expression for V(y)
as given by Eq. (2) and thus determines the range at which V(y)
acts—a range that is no bigger than the cutoff scale.

(3) How much information is contained in these models? For
instance, can interface models determine the critical properties of
correlation functions as well as thermodynamic singularites for
critical wetting?

In this paper, we attempt to answer these questions on a more
rigorous footing through an exact analysis of a two-dimensional Ising
model. For comparison, we also give analogous results for a lattice solid-on-
solid (SOS) model (also in bulk two dimensions). Roughly speaking, our
main result is that, provided one coarse grains to length scales sufficiently
larger than tb, a ‘‘continuous’’ interface model similar to that above does
indeed describe critical wetting except that in our case we find that the
‘‘interface potential’’ is given by V(y)=cd0(y), where d0( · ) is the Dirac
delta distribution supported on {0}, and c depends on the temperature and
the various microscopic parameters of the underlying model. Furthermore,
c > 0 (i.e., repulsive substrate) when T > Tw, c < 0 (attractive substrate)
when T < Tw, and c=0 when T=Tw.

In Section 2 we describe the microscopic models considered. The
interface model, resulting from taking the large-length-scale limit of the
microscopic models, is presented in a mathematically precise form in
Section 3. A brief outline of the methods used to get this result is laid out
in Section 4. Further details of some of this analysis are given elsewhere
[12]. Finally, we finish with some conclusions in Section 5.

2. MICROSCOPIC MODELS

2.1. Two-Dimensional Ising Model

Ising spins, sm, n=±1, are placed on sites (m, n) (1 [ m [M, 0 [
n [N) of a square lattice L … Z2 wrapped on a cylinder of height N+1
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and circumference M (i.e., periodic boundary conditions in the m direc-
tion). The top of the cylinder (n=N) may be left free. Following Abraham
[3], two types of boundary conditions are imposed at the bottom of
the cylinder (n=0). In Case A one fixes sm, 0=+1 for all 1 [ m [M; for
Case B, sm, 0=−1 for 1 [ m [ x and sm, 0=+1 for x+1 [ m [M. The
spins interact ferromagnetically across nearest neighbors according to the
following Hamiltonian:

HL(s)/kBT=− C
M

m=1

1K1 C
N−1

n=1
sm, nsm, n+1+K2 C

N

n=1
sm, nsm+1, n+h1sm, 0sm, 1 2

(4)

Note that, since sm, 0 is held fixed for all m, h1 acts like a surface field on
the row of spins at n=1. The boundary condition B induces a long Peierls
contour (i.e., the interface) joining (12 ,

1
2) to (x+12 ,

1
2) on the dual lattice,

which is absent in Case A. On defining

w :=e2K2(cosh 2K1− cosh 2h1)/sinh 2K1 (5)

Abraham [3] showed that, after taking the limits MQ., NQ., and
xQ. in that order, a wetting transition occurs in Case B at w=1 with
the interface being pinned (respectively, depinned) when w > 1 (respecti-
vely, w < 1). This wetting transition will show up thermodynamically as a
singularity in the incremental free energy, y ×, defined as

y × :=− lim
xQ.

lim
NQ.

lim
MQ.

1
x

ln [ZB/ZA] (6)

where Zb is the canonical partition function for Case b=A, B.

2.2. Solid-on-Solid Model

We consider the lattice model for an interface as introduced by
Abraham and Smith [13]. The interfacial configurations consist of random
‘‘histograms’’ denoted by the Markov random field Y=(Yj)

x
j=0, where

Yj ¥ [0,.) is the height of the interface above the substrate at the lattice
point j. The Gibbs measure for this system, Qx( · ), is then given by

Qx(Y ¥ dy)=
1
Zx

exp 1−o C
x

j=1
|yj−yj−1 |25D

x−1

j=1
(1+ad0)(dyj)6

×d0(dy0) d0(dyx) (7)
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where d0(dyj)=d0(yj) dyj denotes the Dirac measure at 0 and Zx is the
canonical partition function defined so that Qx( · ) normalizes to 1. The
tendency of the substrate to pin the interface increases with a. It was shown
[13] that, in the limit xQ., a wetting transition occurs at a=1/o with
the interface being pinned (repectively, depinned) for a > 1/o (respectively,
a < 1/o).

3. MAIN RESULTS

The main purpose of this paper is to determine from both lattice
models of the previous section the probability distribution of the interface
on length scales sufficiently large that the interface can be viewed as a con-
tinuous object, i.e., a path as a function on a continuous set. It is in this
sense that we can talk about ‘‘continuous interface models.’’ Thus, regard-
ing the direction parallel to the substrate (x and s) as ‘‘time-like’’ and the
height of interface above the substrate (y and Ys) as ‘‘space-like,’’ the Ising
and SOS interface on a sufficiently large length scale will be treated as a
continuous-time Markov stochastic process (Ys)s ¥ [0, x] with Y0=Yx=0. In
Section 3.1 the probability measure, Pcx, for (Ys)s ¥ [0, x] will be presented,
and this will provide a more mathematically precise description of the
emergent continuous interface model but first we need to define some of
the quantities which enter Pcx.

Consider the tied-down Brownian motion (Bs)s ¥ [x1, x2] on R with
Bx1=y1 and Bx2=y2 [14] (this is sometimes called a Brownian bridge). Let
the Brownian motion have diffusion constant 1/(2ỹ). Its conditional
probability measure, n (x2, y2)(x1, y1), is the extension of the finite-dimensional dis-
tributions on Rn given as

n (x2, y2)(x1, y1)(R
[x1, x2] | Bs1 ¥ db1,..., Bsn ¥ dbn)

=
g(s1−x1; b1−y1) g(x2−sn; y2−bn) db1

g(x2−x1; y2−y1)
D
n

j=2
g(sj−sj−1; bj−bj−1) dbj

(8)

where x1 < s1 < · · · < sn < x2 and g(x; y) is the Gauss kernel

g(x; y)=1 ỹ

2px
21/2 e−ỹy2/2x (9)

Now, tied-down reflected Brownian motion (reflected off y=0) is defined by
the process (|Bs |)s ¥ [x1, x2] [14], which is assigned a conditional measure m (x2, y2)(x1, y1)

with the normalization > dm (x2, y2)(x1, y1)=g−+g+ with g±=g(x2−x1; y2±y1). The
probability measure Pcx for (Ys)s ¥ [0, x] is defined in terms of m (x, 0)(0, 0) .
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3.1. Exact Continuous Interface Model

Recall that the height of the wetting interface on a large length scale is
represented by the stochastic process (Ys ¥ [0,.))s ¥ [0, x]. It can be shown
that, for both the Ising and the SOS models, its probability measure Pcx on
the infinite-dimensional space Wx=[0,.)[0, x] is given by

Pcx( · )=
1
Zx(c)

e−2cLxm (x, 0)(0, 0)( · ) (10)

where the partition function, Zx(c), is the following path integral

Zx(c)=F dm (x, 0)(0, 0)e
−2cLx (11)

The random variable Lx is the Brownian ‘‘local time’’ [14] defined by

Lx :=lim
E a 0

1
4E

meas{0 [ s [ x : Ys [ E} (12)

where meas{ · } denotes the Lebesgue measure. Thus, Lx provides a
measure of the amount of interface staying close to the substrate and
formally it can be expressed in terms of the d distribution as

2Lx=F
x

0
d0(Ys) ds (13)

The incremental free energy [which for the Ising model is defined by (6)] is
now given by

y ×(c)−y=− lim
xQ.

1
x

ln Zx(c) (14)

where y is the interfacial tension for a free interface.
The measure Pcx contains two parameters dependent on the underlying

microscopic models, the interfacial stiffness ỹ (which incorporates lattice
anisotropy [15, 16]) entering as the diffusion constant in m (x, 0)(0.0) and c.
These are given as

ỹ=˛ sinh 2Kg
1 sinh 2K2 sinh y, Ising model

1
2 o2, SOS model

(15)
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where the Ising interfacial tension y is given by y=2(K1−K
g
2 ), e

−2Kg
j=

tanh Kj and

c=˛
(1−w)/(2ỹ), Ising model

1
o
−a, SOS model

(16)

recalling that w is given by Eq. (5).
The wetting transition occurs at c=0, and the substrate is wet (re-

spectively, nonwet) when c > 0 (respectively, c < 0). It should be stressed
that the process (Ys)s ¥ [0, x] with Pcx provides an (asymptotically) exact
description of the interface only on sufficiently large length scales. For the
Ising model one requires that length scales be sufficiently larger than the
bulk correlation length tb=1/(2y), and for the SOS model, length scales
need to be sufficiently larger than the SOS lattice spacing. Therefore, for
T < Tw, one requires that the wetting-layer thickness, a, defined by the
expectation a=limxQ. EYx/2, also be sufficiently large. So, for tempera-
tures T < Tw, this interfacial description is valid provided T be sufficiently
close to Tw. For the Ising model this means that w−1 must be sufficiently
small when positive and similarly for a−(1/o) in the SOS model. However,
for T > Tw, the only restriction on T is that it be less than the bulk critical
temperatureTc (which for the SOS model is effectively infinite).

Given Eq. (13), it is tempting to regard the interface model, quantum
mechanically, as describing a Euclidean Schrödinger particle of mass ỹ

moving on the half-line y \ 0 subject to a ‘‘potential’’ cd0(y). In doing so,
one needs to be clear on the effect of the boundary at y=0 when c=0. In
other words, what is the underlying Markov process perturbed by the d

function? The answer is reflected Brownian motion since Pc=0x is clearly the
probability measure for tied-down reflected Brownian motion.

3.2. Family of Finite-Dimensional Distributions

It will prove useful to describe the family of finite-dimenional distri-
butions which can be uniquely extended to the measure Pcx (on the infinite-
dimensional space Wx) presented in Section 3.1. Consider the cylinder set
{Aj … [0,.)}

n
j=1 for all n \ 1. Then the family of finite-dimensional dis-

tributions can be expressed as

Pcx(Wx | Yx1 ¥ A1,..., Yxn ¥ An)=F
A1
dy1 · · ·F

An
dyn px, n(x1, y1;...; xn, yn)

(17)
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where 0 < x1 < · · · < xn < x and px, n( · ) is the joint probability density
function given by

px, n(x1, y1;...; xn, yn)

=
K(x1; 0, y1) K(x−xn; yn, 0)

K(x; 0, 0)
D
n

j=2
K(xj−xj−1; yj−1, yj) (18)

with K( · ) defined by the path integral

K(u; y0, y) :=F dm (u, y)(0, y0) e
−2cLu (19)

By applying Dirichlet-form techniques [17, 18], the path integral K( · ) can
be shown to satisfy a Feynman–Kac formula in terms of the kernel of an
evolution operator e−uĤc through

K(u; y0, y)=(kernel e−uĤc)(y0, y) (20)

where Ĥc is the operator on L2([0,.)) given by

Ĥc=
−1
2ỹ

DN+cd0 (21)

with d0 being the Dirac measure at 0 and DN the one-dimensional
Neumann Laplacian, (DNk)(y)=k'(y) with k −(0)=0. The spectrum of
Ĥc can be determined by treating the term cd0 as a rank 1 perturbation on
−DN/2ỹ [19], and hence, K( · ) can be expressed in spectral form [20]

K(u; y0, y)=G(−c) 4ỹ |c| e2ỹc
2ue−2ỹ |c| (y0+y)

+F
.

−.

dw
2p
e−w

2u/2ỹ 5e iw(y0−y)−12ỹc+iw
2ỹc−iw
2 e iw(y0+y)6 (22)

where G( · ) is the Heaviside step function. Note that the first term in the
RHS of Eq. (22) is due to the single bound state of Ĥc present whenever
c < 0 but absent for all c \ 0.

4. BRIEF OUTLINE OF THE ANALYSIS

The continuous interface model, specified by Pcx, was constructed from
the underlying microscopic models by applying the Kolmogorov extension
theorem [14], which in the present context states the following: the consis-
tent family of finite-dimensional distributions given by the joint probability
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densities {px, n( · )}n \ 1 implies the existence and uniqueness of the measure
Pcx on the infinite-dimensional space Wx. Therefore, our strategy is clear;
for a given microscopic model one computes the joint probabilities for the
interface (long contour) passing through any number (n \ 1) of points on a
sufficiently large scale. If these joint probabilities can be expressed in the
form given by combining Eqs. (18) and (22), then this implies that the
measure Pcx uniquely provides the appropriate ‘‘continuum’’ description.
We now sketch out how these joint probabilities were determined for each
lattice model.

4.1. Ising Model

We start by considering joint probabilities of lattice-contour events
evaluated in terms of the (horizontal) bond energy defined as em, n :=
sm, nsm+1, n so that Im, n :=(1− em, n)/2 is the indicator for a Peierls contour
vertically crossing the bond joining (m, n) to (m+1, n). Let j ¥X denote
the lattice site (xj, yj), where X is the index set X :={1,..., n} [and n in X
is not to be confused with the vertical lattice coordinate in (m, n)]. Then,
by introducing the notations eX :=<j ¥X ej and IX :=<j ¥X Ij, the joint
probability of Peierls contours vertically crossing bonds at {(xj+

1
2 , yj)}j ¥X,

with boundary condition b=A, B, is given by the canonical expectation
OIXPb (where, throughout, the limits N, MQ. have already been taken).
In the presence of a long contour, the probability OIXPB can be shown to
be given by

OIXPB= C
X − ıX

(−1/2) |X
−| OeX

−

PconB OIX0X −PA (23)

where |X −| is the cardinality of the set X − and the sum includes the empty
set,”, with the convention I”=e”=1. Also, OeX

−

PconB is the connected and
rooted |X −|-point bond-energy correlation function, truncated so that
OeX

−

PconB Q 0 whenever max {|xj |, |xj−x|}j ¥X − Q.. Unlike OIXPB, the joint
probability OIXPA is translationally invariant in the x direction, i.e.,
invariant under {xj}-j ¥X W {xj+u}-j ¥X, and can be written

OIXPA= C
= ¥P(X)

D
P ¥ =

OIPPTA with OIPPTA=(−1/2)
|P| OePPTA (24)

where P(X) is the set of all partitions of X, =={P1,..., P|=|} is an element
of P(X), P is an element of = of P(X), and OIPPTA, and OePPTA denote the
truncated |P|-point functions.

Now, the joint probability OIXPB contains contributions coming from
the long contour passing through all, some, or none of the points in X with
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closed cycles, disconnected from the long contour, passing through the
remaining points. If the points in X are sufficiently well separated, then the
terms in Eq. (23) can be understood as follows: (−1/2) |X

−| OeX
−

PconB is the
probability (up to an unimportant prefactor) of the long contour passing
through all the points in X − ıX, whereas OIX0X −PA is the probability of
contours disconnected from the long contour passing through the points in
X0X −. This identification is clear from the truncation properties of OeX

−

PconB

and the translational invariance of OIX0X −PA (which is dominated by small
bulk-like bubbles passing through the points in X0X −). Furthermore,
OIPPTA in Eq. (24) is dominated by the probability of a single closed
contour passing through all the points in P from which one can extract a
large-deviation rate functional of Wulff type.

So, on a large enough scale, the joint probabilities can be obtained
from the truncated n-point bond-energy correlation functions, OeXPTA and
OeXPconB , which can be evaluated exactly using transfer-matrix methods
[21]. The results can be framed in terms of path summations as follows
[12]. Let C(X)={[i1, i2], [i2, i3],..., [in−1, in]} be the path defined as a
sequence of line elements (with [ij, ij+1] connecting the two lattice sites at
ij and ij+1), where {i1,..., in} is some permutation of X. If Cr(X) is the
rooted path with i1 (respectively, in) connected to the lattice site (0, 0)
[respectively, (x, 0)], then OeXPconB can be expressed as a sum over all dis-
tinct rooted paths Cr(X), with each term in the sum corresponding to a
different way the long contour can pass through the n points in X.
Similarly, OeXPTA can be expressed as a sum over all distinct closed circuits
Cc(X)={C(X), [in, i1]}.

On a large scale, the path sum for OeXPconB is dominated by the directed
path, i.e., Cr(X) having 0 < xi1 < xi2 < · · · < xin < x, with all other paths,
containing overhangs, being subdominant by a factor of O(e−aoh/tb), where
aoh is the total excess length of the overhangs in the x direction. To
suppress these overhangs one requires that |xk−xj |± tb for all {j, k} …X,
and in this limit, with w−1 close to zero when positive, one can show that
(−1/2) |X| OeXPconB reduces to the product given by Eq. (18) with Eq. (22).

4.2. SOS Model

Here, the family of finite-dimensional distributions is given by Qx

([0,.)1+x | Yx1 ¥ A1,..., Yxn ¥ An), where {x1,..., xn} … {1,..., x−1}, which
can be exactly evaluated using the transfer-integral methods of Ref. 13.
One then applies standard asymptotic methods to the resulting expression
for large x with xj+1−xj ± 1, and we keep a−1/o small when positive.
This leads asymptotically to the joint probability density function given by
Eq. (18) where K( · ) is given by Eq. (22).
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5. CONCLUSIONS AND DISCUSSION

Using exact methods we have confirmed that a ‘‘continuous interface
model’’ describes wetting in the two-dimensional Ising model (and a corre-
sponding lattice SOS model). In the continuum limit, the interfacial path is
distributed as a Brownian motion off a reflecting barrier containing a Dirac
d perturbation. One needs to be on sufficiently large length scales (with T
sufficiently close to Tw when T < Tw) to get a well-defined continuous
interface model; i.e., we require that all lengths (including the mean thick-
ness of the wetting layer) be sufficiently larger than the bulk correlation
length tb for the Ising model and sufficiently larger than 1 (in units of
lattice spacing) for the SOS model. All properties of critical wetting (asso-
ciated with the long contour) in the asymptotic scaling regime (such as, e.g.,
the scaling limit of the complete hierarchy of the n-point correlation func-
tions) are contained within Pcx.

Our resulting interface ‘‘potential’’ is not a function of the type given
in Eq. (2) but rather a Dirac d distribution supported on the substrate—
indeed, the exact Ising analysis indicates that, on lengths scales of the
required size needed to get a well-defined interface model, a distribution-
valued potential is all one could hope to find. However, on these scales the
potential in Eq. (2) converges in some sense to something resembling a d

distribution [22], although this approach is unlikely to determine the
parameter c exactly, nor does it explain why the substrate is a reflecting
barrier if and only if T=Tw. One could still question whether potentials
given by Eq. (2) should be applied to critical wetting in d=2, bearing in
mind that nonlinear functional renormalization group (NFRG) studies [7,
11] starting from such models do just that, and the results are then
compared to exact Ising solutions. This is used as an important test of the
accuracy of the NFRG method, which is principally directed to the more
elusive case of d=3. We finish with some additional remarks.

(i) For c < 0, the wetting layer thickness is given by a=1/(4ỹ |c|),
and therefore 2cLx in Eq. (10) can be rewritten as −Lx/(2ỹa). From this it
follows that the measure Pcx is manifestly invariant under the scale trans-
formation aW ba, xW b2x, and Ys W bYb2s. This means that as a gets arbi-
trarily large (T arbitrarily close to Tw from below), one can continue to
coarse-grain to an arbitrarily large intermediate scale, provided that it is
much smaller than a, without changing the form of the interface model.
This cannot be said of V(y) given by Eq. (2), whose range is set by tb.

(ii) The expectation l :=limxQ. ELx/x provides a measure of the
average proportion of the substrate staying close to the interface in the
thermodynamic limit. It follows from Eqs. (11) and (14) that 2l=“y×/“c,
from which we have that l=2ỹ |c| for c < 0 and l=0 for c > 0. Hence, we
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can see that no matter how close one is to the wetting transition for T < Tw,
some proportion of the interface (which gets vanishingly small as T ‘ Tw)
will stay close to the substrate and this recurrent property of the interface
[23] is not evident from looking at the wetting layer thickness (where
aQ. as T ‘ Tw) alone. In the mean-field picture, a sits in the minimum of
V(y) given by Eq. (2), which diverges like ln(Tmfw −T)

−1 as T ‘ Tmfw with no
account taken of recurrent events.

(iii) For wetting in the planar Ising model in the presence of a bulk
magnetic field, the interface model can be used to make some exact scaling-
limit predictions. On length scales larger than tb, a positive magnetic field h
(in units of kBT) couples to the total magnetization difference as given by
the area enclosed under the interface. Therefore, defining h̄=2mgh (where
mg > 0 is the spontaneous magnetization and h is vanishingly small), the
factor exp (− h̄ >x0 Ys ds) is included in the expression for Pcx in Eq. (10) and
the partition function in Eq. (11) is similarly modified so that Pcx(Wx)=1.
From this follows the scaling behavior

y ×(c, h)− y=−U(2ỹcth)/(2ỹt2h) with th :=(4ỹmgh)−1/3 (25)

and the scaling function U(z) is defined implicitly through Ai −(U)=zAi(U),
where Ai( · ) is the Airy function. This scaling behavior was found in Ref. 13
for the SOS model but we claim that it also holds in the scaling limit (TQ T ±w
and h a 0) for the Ising model after putting c=(1−w)/(2ỹ). Also, defining
l=l(c, h) as in Remark ii, we have 2l(c, h)=−U −(2ỹcth)/th.
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